Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms.
نویسندگان
چکیده
We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10 degrees C or ambient temperature (2 degrees C from January to April followed by seasonal increase) under simulated natural day length. At 10 degrees C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na(+)-K(+)-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na(+)-K(+)-ATPase activity under both photoperiods occurred later at ambient temperature than at 10 degrees C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10 degrees C and remained elevated for 5-9 wk; the same photoperiod treatment at 2 degrees C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10 degrees C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10 degrees C. Plasma triiodothyronine was initially higher at 10 degrees C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na(+)-K(+)-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.
منابع مشابه
Environmental and endocrine control of gill corticosteroid receptor number and affinity in Atlantic salmon (Salmo salar) during smolting
During smolting, cortisol acts on the gill through intracellular corticosteroid receptors (CR). Regulation of CR concentration (Bmax) and dissociation constant (kd) by environmental factors, however, has not been investigated. We subjected juvenile Atlantic salmon (Salmo salar) to changes in photoperiod and temperature to determine the effect on gill CR Bmax and kd. Cortisol, growth hormone (GH...
متن کاملEffects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon.
Atlantic salmon (Salmo salar) juveniles were reared under simulated conditions of normal photoperiod (LDN) or short days (LD 9:15) and ambient temperature (AMB: normal temperature increases in April) or an advanced temperature cycle (ADV: temperature increases in February). Under both photoperiod conditions, the timing of increased and peak levels of gill Na(+),K(+)-ATPase activity were not alt...
متن کاملEnvironmental endocrinology of salmon smoltification.
Smolting is a hormone-driven developmental process that is adaptive for downstream migration and ocean survival and growth in anadromous salmonids. Smolting includes increased salinity tolerance, increased metabolism, downstream migratory and schooling behavior, silvering and darkened fin margins, and olfactory imprinting. These changes are promoted by growth hormone, insulin-like growth factor...
متن کاملEffects of aqueous exposure to polychlorinated biphenyls (Aroclor 1254) on physiology and behavior of smolt development of Atlantic salmon.
Polychlorinated biphenyls (PCBs) are a widespread aquatic contaminant and are present in both wild and hatchery raised Atlantic salmon, Salmo salar. The possible sub-lethal alterations in smolt physiology and behavior due to PCB exposure of salmon have not been widely examined. In this study, we examined the effects of the PCB mixture Aroclor 1254 on survival and smolt development of Atlantic s...
متن کاملIntestinal transport mechanisms and plasma cortisol levels during normal and out-of-season parr–smolt transformation of Atlantic salmon, Salmo salar
The intestine is one of the major osmoregulatory organs in fish. During the salmon parr–smolt transformation, the intestine must change its functions from the freshwater (FW) role of preventing water inflow, to the seawater (SW) role of actively absorbing ions and water. This development can be assessed as an increased intestinal fluid transport (Jv) during the parr– smolt transformation. The d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2000